Gas Chromatography-Mass Spectrometry Analysis and Inhibitory Activity Against Candida albicans ATCC 10231 of the Leave Ethanolic Extract From Citrus aurantifolia (Christm.) Swingle

Author:

Puspasari Monica1,Stefanie Gloria1,Timotius Kris Herawan12ORCID

Affiliation:

1. Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta, Indonesia

2. Research Center for Jamu and Herbal Medicine, Jakarta, Indonesia

Abstract

Background: Candida albicans is one of the important infectious yeasts that is associated with candidiasis, including oral candidiasis. The extracts of various herbal materials are potential for treating candidiasis. Objectives: The objectives of this study were to determine phytochemical constituents of the leaf ethanolic extract of Citrus aurantifolia with gas chromatography-mass spectrometry (GC-MS) and to investigate the inhibiting effect of this extract on the planktonic growth of C. albicans. Methods: The fresh leaves of C. aurantifolia were macerated overnight with ethanol. The extract was analysed with GC-MS. C. albicans ATCC 10231 was used in this study. The well-diffusion procedure was applied to detect the anti-candida activity qualitatively. Finally, real-time planktonic growth was employed for detecting the anti-candida activity quantitatively. Results: GC-MS analysis revealed four dominant components in the ethanolic leaf extract of C. aurantifolia, namely, limonene, geraniol, phytol, and caryophyllene. The extract inhibited the growth of C. albicans either under the agar diffusion test or real-time planktonic growth. The specific growth rate of C. albicans was slower in the liquid culture with the extract. The specific growth rates of the 0 (control), 13.3, and 26.6 µg/mL were 0.582, 0.384, and 0.272, respectively. Eventually, the yields of the treated growth with 0 (control), 13.3, and 26.6 µg/mL were OD850 of 4.5, 3.0, and 3.7, respectively. Conclusion: The leaf ethanolic extract of C. aurantifolia contains bioactive compounds which have anticandida activity. Thus, it is a good material for new anti-candida ingredients in the future

Publisher

Maad Rayan Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3