Exogenous Nitric Oxide Up-regulates the Runx2 Via Bmp7 Overexpression to Increase the Osteoblast Matrix Production In Vitro

Author:

Abnos Mohammad Hussein1ORCID,Sargolzaei Javad1ORCID,Maleklou Mahsa1ORCID

Affiliation:

1. Department of Biology, Faculty of Sciences, Arak University, Arak, Iran

Abstract

Background: Nitric oxide (NO) is a signaling molecule that is required for the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). According to previous reports, high concentrations of sodium nitroprusside (SNP) inhibit the osteogenic differentiation of BMSCs, while its low concentration promotes this process. Objectives: The present investigation focused on evaluating the underlying mechanism of the osteogenic differentiation of BMSCs treated with low concentrations of SNP as an NO generating agent. Methods: The BMSCs after the 3rd passage was differentiated to osteoblasts when treated with 100 µM for 1 hour every 48 hours until 5, 10, 15, and 20 days of incubation. Then, the matrix production was estimated by quantitative alizarin red assay and calcium determination. The expression of different genes involved in osteogenic differentiation was statistically determined using the reverse transcriptase polymerase chain reaction. Finally, alkaline phosphatase activity was measured by a commercial kit. Results: The exogenous NO caused a significant (P<0.05) increase in the matrix production of differentiated BMSCs from day 5 to 20. The results showed the elevation of alkaline phosphatase activity and the up-regulation of its gene. Eventually, an increase was observed in the expression of a cascade of other genes such as osteonectin, Bmp7, Smad1, Runx2, and Raf1 in treated BMSCs. Conclusion: Overall, short-time treatment with a low concentration of exogenous NO increases the matrix production via gene up-regulation and protein production, which might open a new window in treating the low-density bone complication.

Publisher

Maad Rayan Publishing Company

Subject

Management of Technology and Innovation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3