Antibacterial Components of Levisticum officinale Koch against Multidrug-resistant Mycobacterium tuberculosis

Author:

Monsef Esfahani Hamidreza1,Moridi Farimani Mahdi2,Nejad Ebrahimi Samad2,Jung Jee Hyung3,Aliahmadi Atousa4,Abbas-Mohammadi Mahdi2,Skropeta Danielle5,Kazemian Hossein6,Feizabadi Mohammadmehdi7,Miran Mansour8ORCID

Affiliation:

1. Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

2. Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.

3. College of Pharmacy, Pusan National University, Busan, South Korea.

4. Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.

5. Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW 2500, Australia.

6. Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.

7. Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

8. Department of Pharmacognosy and Biotechnology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.

Abstract

Background: A bioassay-guided fractionation technique was used to evaluate the active constituents of the perennial plant L. officinale W.D.J. Koch (Apiaceae) against multidrug resistant (MDR) Mycobacterium tuberculosis. Methods: Column chromatography was used to isolation of compounds from L. officinale and spectroscopic methods including 1D and 2D NMR (Nuclear magnetic resonance) and HRMS (high resolution mass spectrometry) were used to identification of the isolated compounds. Also, to evaluate antibacterial activity, minimum inhibitory concentration (MIC) was carried out by broth micro-dilution method. Finally, molecular docking (MD) was performed using the Schrödinger package to evaluate interactions between the active compounds and InhA protein. Results: Phytochemical analysis of the ethyl acetate extract of the plant roots led to isolation of bergapten (1), isogosferol (2), oxypeucedanin (3), oxypeucedanin hydrate (4), imperatorin (5), ferulic acid (6) and falcarindiol (7). Falcarindiol and oxypeucedanin indicated a moderate activity on MDR M. tuberculosis with MIC values of = 32 and 64 μg/mL, respectively. Antibacterial activity of falcarindiol was also observed against S. aureus and methicillin-resistant S. aureus strains with the MIC values of 7.8 and 15.6 μg/mL, respectively. The results of docking analysis showed a good affinity of oxypeucedanin (3) and falcarindiol (7) to InhA enzyme with docking score values of -7.764 and -7.703 kcal/mol, respectively. Conclusion: Finally, 7 compounds were isolated from L. officinale that compounds 2-6 report for the first time from this plant. On the basis of the molecular docking (MD) study, oxypeucedanin (3) and falcarindiol (7) as active compounds against M. tuberculosis may be proposed as potential inhibitors of 2-trans-enoyl-ACP reductase (InhA), a key enzyme involved in the biosynthesis of the mycobacterial cell wall. Moreover, antibacterial activity of falcarindiol against methicillin-resistant S. aureus (MRSA) was remarkable.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3