Towards disentangling climatic and tectonic changes of southernmost Africa using strontium isotope stratigraphy and clumped isotope thermometry

Author:

Linol B.1,Montañez I.2,Lombardo A.2,Kuta D.2,Upadhyay D.3,Arnold A.3,Tripati A.3,Bauer A.M.4,Musa S.5

Affiliation:

1. AEON-ESSRI (Africa Earth Observatory Network-Earth Stewardship Science Research Institute), Nelson Mandela University, Port Elizabeth, South Africa e-mail: bastien.aeon@gmail.com

2. Department of Earth and Planetary Sciences, University of California Davis, USA e-mail: ipmontanez@ucdavis.edu; ajlombardo@ucdavis.edu; djkuta@ucdavis.edu

3. Department of Earth, Planetary and Space Sciences, Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, Center for Diverse Leadership in Science, University of California, Los Angeles, USA e-mail: deepshikha1936@gmail.com; ajarnold1@ucla.edu; atripati@g.ucla.edu

4. Department of Geoscience, University of Wisconsin-Madison, USA e-mail: annie.bauer@wisc.edu

5. Department of Geosciences, Nelson Mandela University, Port Elizabeth, South Africa e-mail: sam16musa@gmail.com

Abstract

Abstract Upper Cretaceous-Cenozoic marine sequences preserved between 30 and 350 masl across southern South Africa record a complex history of climatic and tectonic changes. In this study, we measure the strontium (Sr) isotope composition of fossil shark teeth, echinoderms, corals and oyster shells to chronostratigraphically constrain the ages of these sequences. The method requires careful petrographic screening and micro-drilling of the samples to avoid possible alteration by diagenesis. To assess palaeoenvironmental effects in the shells we measured the Mg/Ca elemental ratios and O isotope values using electron microprobe analysis (EMPA) and secondary ion mass spectrometry (SIMS). In addition, we employed carbonate clumped isotope thermometry to test palaeotemperatures reconstruction. The analysis of recent to modern stromatolites by clumped isotopes yields an average temperature of 20.2°C, in agreement with present day observations. The fossil oyster shells suggest a warmer (23.0°C) seawater palaeotemperature, possibly due to major deglaciation and sea-level rise during the Neogene. We also find that transgressions occurred above 200 to 350 m elevation during: 1) the Campanian-Maastrichian (~75 Ma); 2) the mid-Oligocene (32 to 26 Ma); and 3) the Messinian-Zanclean (6 to 5 Ma). These three episodes are linked to well-known variations in global sea level and regional tectonic processes that could have affected the continental margin differently. The most recent transgression coincides with a maximum global sea-level rise of ~50 m at ca. 5.3 Ma, and a worldwide plate kinematic change around 6 Ma, which in Eurasia led to the closure of the Mediterranean Sea. In the Eastern Cape of South Africa, the new dates of analyzed oyster shells constrain a minimum uplift rate of ca. 150 m/Myr during this tectonic activity. The results have important implications for robust calibration of relative sea level in southern Africa.

Publisher

Geological Society of South Africa

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3