Atmospheric oxygenation at the onset of Earth’s Great Oxidation forced enhanced marine anoxia

Author:

Havsteen J.C.1,Eickmann B.2,Izon G.3,Kleinhanns I.C.1,Rosca C.1,Beukes N.J.4,Schoenberg R.14

Affiliation:

1. Department of Geosciences, University of Tuebingen, Tuebingen, Germany

2. Departamento de Geociencias, Universidad de los Andes, Bogotá, Colombia

3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, USA

4. DSI-NRF CIMERA, Department of Geology, University of Johannesburg, Johannesburg, South Africa

Abstract

Abstract Capturing the loss of mass-independent sulphur isotope fractionation (MIF-S), the correlative South African Duitschland and Rooihoogte formations are widely held to bear the isotopic fingerprint of the first atmospheric oxygenation at the onset of the so-called Great Oxidation Event (GOE). Surprisingly, however, while the multiple sulphur isotope systematics of these formations remain central to our understanding of the GOE, until now, comparatively little work has been done to elucidate the repercussions within the marine realm. Here we present chemostratigraphic records from four drill cores covering a large area of the Transvaal Basin, transcending these crucial units and continuing into the overlying Timeball Hill Formation (TBH), that document the immediate, yet counterintuitive, marine response to atmospheric oxygenation. Specifically, irrespective of the interpretative framework employed, our basin-wide redox-sensitive trace element data document an environmental change from oxic/suboxic conditions within the lower and middle parts of the Duitschland and Rooihoogte formations to suboxic/anoxic conditions within their upper reaches. Interestingly, in concert with a ~35‰ negative δ34S excursion that implicates increased sulphate availability and bacterial sulphate reduction, δ98/95Mo3134+0.25 values increase by ~1.0 to 1.5‰. Combining these observations with increased Fe/Mn ratios, elevated total sulphur and carbon contents and a trend towards lower δ13Corg values imply a shift toward less oxygenated conditions across the Transvaal Basin. The combined observations in the mentioned parameters expose a geobiological feedback-driven causality between the earliest oxygenation of the atmosphere and decreased redox potentials of medium to deep marine environments, at least within the Transvaal Basin.

Publisher

Geological Society of South Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3