Gliding and overthrust nappe tectonics of the Barberton Greenstone Belt revisited: A review of deformation styles and processes

Author:

Van Kranendonk M.J.1

Affiliation:

1. School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Kensington, NSW 2052 Australia e-mail: m.vankranendonk@unsw.edu.au

Abstract

Abstract Interpretations of the structural/tectonic evolution of the Barberton Greenstone Belt (BGB) and its surrounding granitoid rocks remain controversial, with proponents for both horizontal thrust-accretion (plate tectonic) and partial convective overturn (vertical tectonic) models. Here, an area of complex folds that was used to support the operation of plate tectonic-derived gliding and overthrust nappe tectonics is re-investigated in detail and placed within the broader structural development of the BGB and surrounding granitoid domains via a re-analysis of structures, and geochronological, stratigraphic and metamorphic data across the whole of this important geological terrain. The results of detailed field mapping show that the complex folds, which occur on the northern limb of the 20 km wavelength, vertically plunging, Onverwacht Anticline, do not represent a re-folded, originally recumbent, isoclinal fold, as previously interpreted. Instead, the folds represent a moderately shallow east-plunging fold train that formed from a single episode of deformation. Fold asymmetry is consistent with formation during originally north-side-up reverse shear on bounding faults, consistent with the offset direction required to explain the fault-repeated slices of Mendon Formation + Fig Tree Group rocks that uniquely occur across the northern limb of the Onverwacht Anticline. More broadly, a review of the BGB and surrounding granitoid rocks show that formation was likely through two discrete, ~120 Ma long, episodes of mantle upwelling, or plume, magmatism, each of which led to crustal melting and partial convective overturn (PCO), a tectonic mechanism that arises from the gravity-driven interaction between dense, upper crustal greenstones and partially melted, more buoyant, granitoid-dominated middle crust. The first mantle upwelling episode, at 3 530 to 3 410 Ma, commenced with long-lived eruption of ultramafic-mafic lavas of the Sandspruit, Theespruit, Komati, and lower Hooggenoeg formations (3 530 to 3 470 Ma). Heat from this magmatic event gave rise to partial melting of the crust that, combined with fractionation of mafic magma chambers produced widespread felsic magmatism at 3 470 to 3 410 Ma (upper Hooggenoeg Formation and Buck Reef Chert), the latter parts of which were accompanied by the formation of D1 dome-and-keel structures via PCO in deeper-levels of the crust represented by the Stolzburg Domain in the far southwest part of the belt. The second mantle upwelling, or plume, episode commenced at 3 334 to 3 215 Ma with the eruption of ultramafic-mafic lavas of the Kromberg, Mendon and Weltevreden formations. Heat from this magmatic event gave rise to renewed partial melting of the crust that, combined with fractionation of mafic magma chambers, produced widespread felsic magmatism at 3 290 to 3 215 Ma. A second, longer-lived and more complex, multi-stage episode of PCO (D2-D4) accompanied deposition of the Fig Tree and Moodies groups from 3 250 to 3 215 Ma. Late D5 deformation accompanied emplacement of the Mpulizi and Piggs Peak batholiths at ca. 3.01 Ga, as previously identified. The Inyoka and Kromberg faults, which separate domains with distinct structural styles, represent neither terrane boundaries nor suture zones, but rather axial faults that separate deformed but generally inward-facing greenstone panels that sank inwards off rising granitoid domains that surround the BGB.

Publisher

Geological Society of South Africa

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3