A neural network application to assess magma diversity in the Etendeka igneous province, Namibia

Author:

Owen-Smith T.M.1,Trumbull R.B.2,Bauer K.2,Keiding J.K.3,Will T.M.4

Affiliation:

1. GFZ German Research Centre for Geosciences, Potsdam, Germany Department of Geology, University of Johannesburg, South Africa e-mail: trishyaos@uj.ac.za

2. GFZ German Research Centre for Geosciences, Potsdam, Germany e-mail: bobby@gfz-potsdam.de; klaus@gfz-potsdam.de

3. Geological Survey of Denmark and Greenland GEUS, Copenhagen, Denmark e-mail: jkk@geus.dk

4. Institute of Geography and Geology, University of Würzburg, Germany e-mail: thomas.will@uni-wuerzburg.de

Abstract

Abstract The geochemical discrimination of different magma types in Large Igneous Provinces is conventionally based on a few, pre-selected variables that are regarded to have petrological meaning. An alternative approach explored in this study is to apply the neural network technique of self-organising maps (SOM) to identify inherent groupings in data without knowledge or assumptions (unsupervised learning). The dataset used in this study comprises whole-rock analyses from extrusive (lava) and intrusive (dykes, sills) mafic suites in the Etendeka province, Namibia, taken from published sources and augmented by 103 new chemical analyses of dykes. Six SOM-classified groups are identified, which are unevenly distributed among the extrusive and the intrusive rock suites. The lava samples are dominated by just three of the six SOM groups (95% of all samples) and one group is absent entirely, whereas all six groups are present in the intrusive suite and five of them each comprise more than 5% of the samples. The geographic distribution of SOM-grouped dykes is heterogeneous and groups that are under-represented in the lava suite occur preferentially in a region of the pre-Etendeka basement where few lavas are preserved. Thus, the difference in magma diversity between intrusive and extrusive suites may be partly an artefact of erosion, which implies that a proper assessment of magma diversity in this and other LIPs must include the intrusive components. The correspondence of our SOM groupings with magma types in the Etendeka province that were established from petrologically defined variables is reasonably good for most trace-element abundances and ratios. However, some of the SOM groups have a wide range of initial Sr–Nd isotope ratios and a poor correspondence with the established magma types. We conclude that the SOM approach is useful for sorting out large and complex geochemical datasets but the method gives all input variables equal weight, which may be problematic if they have different responses to processes in the system under study (e.g., partial melting, fractional crystallisation, degassing, alteration). It is no substitute for expert petrological knowledge in discriminating genetically distinct magma types in an application like the present one.

Publisher

Geological Society of South Africa

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3