Affiliation:
1. University of Dundee, Department of Molecular and Cellular Pathology, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
Abstract
The paradigm of genetic alterations being restricted to direct DNA damage after exposure to ionizing radiation has been challenged by observations in which effects of ionizing radiation arise in cells that in themselves receive no radiation exposure. These effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that are in contact with irradiated cells or receive certain signals from irradiated cells (radiation-induced bystander effects). Bystander signals may be transmitted either by direct intercellular communication through gap junctions, or by diffusible factors, such as cytokines released from irradiated cells. In both phenomena, the untargeted effects of ionizing radiation appear to be associated with free radical-mediated processes. There is evidence that radiation-induced genomic instability may be a consequence of, and in some cell systems may also produce, bystander interactions involving intercellular signalling, production of cytokines and free radical generation. These processes are also features of inflammatory responses that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. Thus, radiation-induced genomic instability and untargeted bystander effects may reflect interrelated aspects of inflammatory type responses to radiation-induced stress and injury and contribute to the variety of the pathological consequences of radiation exposures.
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献