Radiation-induced versus endogenous DNA damage and assays that measure parameters reflecting DNA damage on cell by cell basis: comments on the article by Pollycove and Feinendegen

Author:

Roti Roti Joseph L1

Affiliation:

1. Department of Radiation Oncology, Radiation and Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 USA;

Abstract

The article by Pollycove and Feinendegen raises important issues regarding the relative contributions of endogenous and radiation-induced DNA damage to the overall DNA damage burden following low level radiation exposures. Clearly, resolution of the issues raised in their article will have important implications regarding regulatory philosophy. Dose-limiting studies of DNA damage measured on a cell-by-cell basis was used to analyze available data in the context of the proposed model. If one proposes that significant numbers of oxidative DNA lesions are present in cells at a steady state level at any give time, then such damage will be included in the background measure of any DNA damage dependent parameter that is sensitive to these classes of DNA damage. Then the expected number of lesions per cell was compared, prior to X- or γ-ray exposure, at the dose that gives the minimum statistically significant difference from background, at the dose where the DNA damage dependent parameter is twice background (i.e., the doubling dose). The lesion frequencies predicted from the model by Pollycove and Feinendegen are reasonable for the micronucleus assay and the inhibition of DNA supercoil rewinding, but appear to be inconsistent with results from the comet assay. Possible explanations for the inconsistency between the comet assay dose) response data and the predicted levels of DNA damage predicted by the model are discussed, suggesting that the estimates of the radiation induced damage are too low and those for endogenous damage are too high. The goal in introducing these issues is not to be negative to the article but to present a basis for future discussions and more importantly future experimental work, by which the important issues raised can be resolved.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3