The practical utility of incorporating model selection uncertainty into prognostic models for survival data

Author:

Augustin Nicole1,Sauerbrei Willi2,Schumacher Martin3

Affiliation:

1. Department of Statistics, University of Glasgow, Glasgow, UK

2. Institut für Medizinische Biometrie und Medizinische Informatik, Universitätsklinikum Freiburg, Freiburg, Germany,

3. Institut für Medizinische Biometrie und Medizinische Informatik, Universitätsklinikum Freiburg, Freiburg, Germany

Abstract

Predictions of disease outcome in prognostic factor models are usually based on one selected model. However, often several models fit the data equally well, but these models might differ substantially in terms of included explanatory variables and might lead to different predictions for individual patients. For survival data, we discuss two approaches to account for model selection uncertainty in two data examples, with the main emphasis on variable selection in a proportional hazard Cox model. The main aim of our investigation is to establish the ways in which either of the two approaches is useful in such prognostic models. The first approach is Bayesian model averaging (BMA) adapted for the proportional hazard model, termed ‘approx. BMA’ here. As a new approach, we propose a method which averages over a set of possible models using weights estimated from bootstrap resampling as proposed by Buckland et al., but in addition, we perform an initial screening of variables based on the inclusion frequency of each variable to reduce the set of variables and corresponding models. For some necessary parameters of the procedure, investigations concerning sensible choices are still required. The main objective of prognostic models is prediction, but the interpretation of single effects is also important and models should be general enough to ensure transportability to other clinical centres. In the data examples, we compare predictions of our new approach with approx. BMA, with ‘conventional’ predictions from one selected model and with predictions from the full model. Confidence intervals are compared in one example. Comparisons are based on the partial predictive score and the Brier score. We conclude that the two model averaging methods yield similar results and are especially useful when there is a high number of potential prognostic factors, most likely some of them without influence in a multivariable context. Although the method based on bootstrap resampling lacks formal justification and requires some ad hoc decisions, it has the additional positive effect of achieving model parsimony by reducing the number of explanatory variables and dealing with correlated variables in an automatic fashion.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3