Dose-dependent transcriptome changes by metal ores on a human acute lymphoblastic leukemia cell line

Author:

Sun Nina N1,Fastje Cynthia D1,Wong Simon S1,Sheppard Paul R2,Macdonald Stephanie J1,Ridenour Gary2,Hyde Juanita D1,Witten Mark L3

Affiliation:

1. Southwest Environmental Science Center and Department of Pediatrics, University of Arizona College of Medicine, Tucson, USA

2. Tree Ring Laboratory, University of Arizona College of Medicine, Tucson, USA

3. Southwest Environmental Science Center and Department of Pediatrics, University of Arizona College of Medicine, Tucson, USA,

Abstract

The increased morbidity of childhood leukemia in Fallon, Nevada and Sierra Vista, Arizona has prompted great health concern. The main characteristic that these two towns share is the environmental pollution attributed to metal ore from abandoned mining operations. Consequently, we have investigated the transcriptome effects of metal ores from these endemic areas using a human T-cell acute lymphoblastic leukemia cell line (T-ALL). Metal ore from Fallon significantly increased cell growth after 24, 48 and 72 h of incubation at 1.5 mg/mL concentration, as measured by trypan-blue. Sierra Vista ore significantly increased cell growth with 0.15 and 1.5 mg/mL following 72 h of incubation. From human cDNA microarray, results indicate that in total, eight genes, mostly metallothionein (MT) genes, were up-regulated and 10 genes were down-regulated following treatment of the T-ALL cells with 0.15 and 1.5 mg/mL of metal ores at 72 h, in comparison with untreated cells. Twenty-eight metals of both ores were quantified and their presence may be associated with the cell growth rate and dose-dependent activation of transcriptomes in immature T-cells.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3