Percutaneous absorption and skin irritation upon low-level prolonged dermal exposure to nonane, dodecane and tetradecane in hairless rats

Author:

Babu RJ1,Chatterjee A1,Ahaghotu E1,Singh M2

Affiliation:

1. College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL, USA

2. College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL, USA,

Abstract

Even though the dermal toxicity of hydrocarbon fuels has been well established in the literature, there is little information available on the dermal penetration kinetics and irritation potential of the individual hydrocarbons. The penetration and skin retention of nonane, dodecane and tetradecane was assessed in vitro using hairless rats’ skin. The effects of unocclusive dermal exposures of these chemicals (15 mL every 2 h for 8 h a day for four days) on the transepidermal water loss (TEWL) and erythema were measured in CD hairless rats. The expression of interleukin 1a (IL-1a) and TNF-a in the skin and blood were measured at the end of dermal exposures. The flux of dodecane was 3- and 77-fold higher than nonane and tetradecane. The retention of chemicals in stratum corneum (SC) was in the order of tetradecane-dodecane-nonane, and directly correlated to the log Kp (r2-0.9900) and molecular weight of the chemicals (r2-0.8782). The TEWL and erythema data indicate that irritation was in the following order: tetradecane-dodecane-nonane. Likewise, the expression of IL-1a in the blood and TNF-a in the skin after dermal exposures was higher for tetradecane followed by dodecane and nonane compared to control. In conclusion, the aliphatic hydrocarbon chemicals of the present study induced cumulative irritation upon low-level repeat exposures for a four-day period. The affinity of the chemicals to SC and their gradual accumulation in the skin in the present study is the probable cause for the differences in the skin irritation profiles of different aliphatic chemicals. The findings of the present study will be helpful in understanding the skin irritation response of the chemicals in humans; indeed the reality check arises from dermal exposures in humans and human experience in occupational handling of these chemicals.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3