Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid phenethyl ester

Author:

Öktem Faruk1,Yilmaz H Ramazan2,Ozguner Fehmi3,Olgar Seref4,Ayata Ali4,Uzar Ertugrul5,Uz Efkan2

Affiliation:

1. Department of Pediatric Nephrology, School of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey,

2. Department of Medical Biology and Genetics, School of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey

3. Department of Physiology, School of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey

4. Department of Pediatrics, School of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey

5. Department of Neurology, School of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey

Abstract

The exact mechanisms of methotrexate-induced renal toxicity have not yet been determined. However, several hypotheses have been put forward, including oxidative stress. The aim of this study was to investigate the role of caffeic acid phenethyl ester (Caffeic Ester), a novel antioxidant, on methotrexate-induced renal oxidative stress in rats. Nineteen adult male rats were equally divided into three experimental groups as follows: control group, methotrexate-treated group, and methotrexate-/Caffeic Ester-treated group. A single dose of methotrexate (20 mg/kg) was administered intraperitoneally (ip). Caffeic Ester (10 mmol/kg) was administered ip, once daily for seven days. Malondialdehyde (MDA) levels (an index of lipid peroxidation) were used as a marker of oxidative stress-induced renal injury. Similarly, the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were determined to evaluate the changes of antioxidant status in renal tissue. Methotrexate administration to control rats increased MDA levels (PB < 0.0001), but decreased SOD, CAT and GSH-Px activities in renal tissue (PB < 0.0001). Caffeic Ester-/methotrexate treatment caused a significant decrease in MDA levels (PB < 0.001), and caused an increase in SOD, CAT and GSH-Px activities when compared with methotrexate treatment alone (PB < 0.001, < 0.05, < 0.0001, respectively). In conclusion, methotrexate leads to a reduction in antioxidant enzymatic defense capacity and causes lipid peroxidation in renal tissue. Similarly, Caffeic Ester exhibits protective effects on methotrexate-induced renal oxidative impairment in rats.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3