Diversity of model approaches for breast cancer screening: a review of model assumptions by The Cancer Intervention and Surveillance Network (CISNET) Breast Cancer Groups

Author:

Boer Rob1,Plevritis Sylvia2,Clarke Lauren3

Affiliation:

1. Department of Public Health, Erasmus MC, Rotterdam, The Netherlands,

2. Department of Radiology, Lucas Center, Stanford, CA, USA

3. Cornerstone Systems, Lynden, WA, USA

Abstract

The National Cancer Institute-sponsored Cancer Intervention and Surveillance Network program on breast cancer is composed of seven research groups working largely independently to model the impact of screening and adjuvant therapy on breast cancer mortality trends in the US from 1975 to 2000. Each of the groups has chosen a different modeling methodology without purposeful attempt to be in contrast with each other. The seven groups have met biannually since November 2000 to discuss their methodology and results. This article investigates the differences in methodology. To facilitate this comparison, each of the groups submitted a description of their model into a uniformly structured web based ‘model profiler’. Six of the seven models simulate a preclinical natural history that cannot be observed directly with parameters estimated from published evidence concerning screening and therapy effects. The remaining model regards published evidence on intervention effects as prior information and updates that with information from the US population in a Bayesian type analysis. In general, the differences between the models appear to be small, particularly among the models driven by natural history assumptions. However, we demonstrate that such apparently small differences can have a large impact on surveillance of population trends. We describe a systematic approach to evaluating differences in model assumptions and results, as well as differences in modeling culture underlying the differences in model structure and parameters.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3