Homocysteine-induced vascular dysregulation is mediated by the NMDA receptor

Author:

Qureshi Irfan1,Chen Hongjiang1,Brown Aliza T1,Fitzgerald Ryan1,Zhang Xingjian1,Breckenridge Julie2,Kazi Rafi2,Crocker Amy J2,Stühlingexsr Markus C3,Lin Kenneth3,Cooke John P3,Eidt John F1,Moursi Mohammed M4

Affiliation:

1. Department of Surgery, Division of Vascular Surgery, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA, Department of Surgery, Division of Vascular Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA

2. Department of Surgery, Division of Vascular Surgery, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA

3. Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA

4. Department of Surgery, Division of Vascular Surgery, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA, Department of Surgery, Division of Vascular Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA,

Abstract

Elevated plasma homocysteine accelerates myointimal hyperplasia and luminal narrowing after carotid endarterectomy. N-methyl D aspartate receptors (NMDAr) in rat cerebrovascular cells are involved in homocysteine uptake and receptor-mediated stimulation. In the vasculature, NMDAr subunits (NR1, 2A-2D) have been identified by sequence homology in rat aortic endothelial cells. Exposure of these cells to homocysteine increased expression of receptor subunits, an effect that was attenuated by dizocilpine (MK801), a noncompetitive NMDA inhibitor. The objective of this study was to investigate the existence of an NMDAr in rat vascular smooth muscle (A7r5) cells, and also the effect of homocysteine on vascular dysregulation as mediated by this receptor. Subunits of the NMDAr (NR1, 2A-2D) were detected in the A7r5 cells by using the reverse transcriptase polymerase chain reaction and Western blotting. Homocysteine induced an increase in A7r5 cell proliferation, which was blocked by MK801. Homocysteine, in a dose and time dependent manner, increased expression of matrix metallinoproteinase-9 and interleukin-1beta, which have been implicated in vascular smooth muscle cell migration and/or proliferation. Homocysteine reduced the vascular elaboration of nitric oxide and increased the elaboration of the nitric oxide synthase inhibitor, asymmetric dimethylarginine. All of these homocysteine mediated effects were inhibited by MK801. NMDAr exist in vascular smooth muscle cells and appear to mediate, at least in part, homocysteine-induced dysregulation of vascular smooth muscle cell functions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3