Suppression of acute experimental allergic encephalomyelitis with a small molecule inhibitor of α4 integrin

Author:

Piraino P S1,Yednock T A2,Freedman S B2,Messersmith E K2,Pleiss M A2,Karlik S J3

Affiliation:

1. Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room 223, London, ON, Canada N6A 5C1

2. Elan Pharmaceuticals, Inc., 800 Gateway Boulevard, South San Francisco, CA, 94080, USA

3. Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room 223, London, ON, Canada N6A 5C1,

Abstract

Purpose: To determine the efficacy of a small molecule inhibitor of α4 integrin (CT301) at reversing the clinical, pathological and MR- detectable deficits associated with the acute phase of experimental allergic encephalomyelitis (EAE). Materials and methods: EAE was induced in 36 female Hartley guinea pigs, and the treatment period was from day 11 to day 17 post-immunization. Animals received either saline (n=12), anti-α4 integrin antibody (AN100226m; n=12) or CT301 (n=12). T2-weighted fast spin echo and T1-weighted pre- and post-contrast scans were performed at the beginning (day 11) and end (day 18) of the treatment period, and scored for cerebral inflammation and gadolinium enhancement. T1-weighted images were further analyzed to quantify this enhancement as a measure of blood-brain barrier integrity. Dissected CNS was evaluated for inflammation and demyelination. Results: CT301 successfully reversed two clinical indicators of disease over the course of the treatment period. These animals showed decreased T2-weighted abnormalities, as well as a reduction in gadolinium leakage on T1-weighted images. Meningeal and perivascular inflammation was decreased by anti-α4 integrin treatments. Conclusion: CT301 effectively reverses the clinical, pathological and MR-detectable deficits of acute EAE, and may therefore be a promising therapeutic agent in multiple sclerosis (MS).

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3