Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis

Author:

Fazekas F1,Ropele S2,Enzinger C2,Seifert T3,Strasser-Fuchs S3

Affiliation:

1. Department of Neurology, Karl-Franzens-University Graz, Auenbruggerplatz 22, A-8036 Graz, Austria, Magnetic Resonance Center, Karl-Franzens-University Graz, Auenbruggerplatz 9, A-8036 Graz, Austria,

2. Department of Neurology, Karl-Franzens-University Graz, Auenbruggerplatz 22, A-8036 Graz, Austria, Magnetic Resonance Center, Karl-Franzens-University Graz, Auenbruggerplatz 9, A-8036 Graz, Austria

3. Department of Neurology, Karl-Franzens-University Graz, Auenbruggerplatz 22, A-8036 Graz, Austria

Abstract

Objective: Previous magnetization transfer (MT) studies in multiple sclerosis (MS) suggest a reduction of the MT ratio (MTR) precedes new lesion development. To gain further insight into pre-lesional tissue abnormalities, we investigated the time course of additional quantitative MT parameters. Methods: Serial magnetic resonance imaging (MRI), including a gadolinium-enhanced T1 scan and MT imaging by means of a FastPACE sequence, was performed on 12 patients (4 males, 8 females) with relapsing-remitting MS. Quantitative MT values including the magnetization exchange rate (kfor) and the native relaxation time (T1free) were analysed in the six months prior to the appearance of 44 enhancing lesions and in 88 control regions of persistently normal-appearing white matter (NAWM). Results: Appearance of new active lesions was preceded by a significant decrease of the MTR (F7,166=91.5; p <0.0001) and of kfor (F7,166=105.2; p <0.0001), and by an increase of T1free (F7,166=57.3; p <0.0001). The drop of kfor was the most pronounced pre-lesional change and together with the MTR was statistically significant already four months before the appearance of new lesion. The observed increase of T1free was relatively small. MT variables of reactivated lesions were always different from NAWM but showed no characteristic time course. Conclusions: Multiparametric MT measurements suggest both a reduction of macromolecular material and a focal increase of free water to occur several months before the appearance of an active lesion. Reduction of the magnetization exchange rate, which may result from primary damage to myelin, appears to be the leading event.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3