The characterisation and uptake of paraquat in cultured baboon kidney proximal tubule cells (bPTC)

Author:

Machaalani R,Lazzaro V,Duggin G G1

Affiliation:

1. Department of Renal Medicine and Toxicology Unit, Royal Prince Alfred Hospital, Camperdown 2050, Australia

Abstract

A primary culture of baboon proximal tubule cells (bPTC) was prepared and characterised using LLC-PK1 cells of proximal tubule origin and MDCK cells of distal tubule origin, as positive and negative references, respectively. The proximal tubular origin of the bPTC was determined by morphological studies, immunoperoxidase staining and the expression of proximal tubule markers alkaline phosphatase and gammaglutamyltransferase. The hypothesis that paraquat (PQ) is transported by the bPTC was investigated. The cytotoxic threshold for PQ in these cells was determined and compared to the LLC-PK1 and MDCK cells. Furthermore, this study investigated the transport of the monovalent cation tetraethyl ammonium (TEA) and the polyvalent cation cimetidine in the bPTC and demonstrated their effect on the cellular uptake of PQ. The cytotoxic threshold of PQ in the bPTC, determined by cellular viability studies using the method of Trypan blue exclusion, is 0.05 mM at 2 h incubation. The LC50 after 24 his 76, 61 and 455 pM for the bPTC, LLC-PK1 and MDCK cells, respectively. This indicates that proximal tubule cells are more susceptible to PQ toxicity compared to distal tubule cells, which is consistent with clinical PQ toxicity where renal damage is found predominantly in the proximal renal tubules. The cations PQ and cimetidine were actively transported by the bPTC. The uptake of PQ (0.05 mM) commenced after 15 min whereas cimetidine (0.5 mM) uptake was evident after 2 min. Furthermore, cimetidine was shown to compete with PQ for uptake in the bPTC. Coincubating PQ (0.05 mM) and cimetidine (0.5 mM) for 60 min resulted in an approximate 50% decrease in PQ uptake. The cation TEA was not transported by the bPTC suggesting either a genetic mutation or complete absence of the transporter for TEA in the cells. The results suggest that PQ may be transported by the same cation transporter as cimetidine and not TEA, indicating PQ uptake in the bPTC to be via a polyvalent organic cation transporter.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3