Affiliation:
1. Division of Biometry and Risk Assessment, National Center for Toxicological Research (NCTh), Food and Drug Administration, Jefferson, Arkansas 72079, USA
2. Division of Genetic and Reproductive Toxicology, NCTR
3. Office of the Director, NCTR
Abstract
The question of whether caloric restriction (CR) is hormetic is addressed in terms of two common defini-tions of the term. In terms of the older definition, i.e., a growth-stimulatory effect when lower doses of a compound which resulted in growth inhibition at higher doses, CR is better characterized as a co-hormetic (i.e., a paradigm which at relatively “low doses,” in combina-tion with some stimulus, will evince increased growth (proliferation) and at higher “doses” will inhibit this increased proliferation) rather than a hormetic agent. Mechanisms such as cellular selection of cellular subpopulations, increases in receptor efficiency, and preservation of cellular proliferative potential can inter-act with agents and produce increased growth as long as the CR is not too severe. In terms of a broader definition, i.e., nonmonotonic dose-response behavior of a compound for any adverse response, CR appears to be hormetic, both as a result of body weight (BW) loss and other potential mechanisms. The impact of changes in BW, or frank CR, can be considered a component of every test for hormesis, and is thus capable for interaction with any other agent. The changes that BW loss (or CR) induce are so profound that any aspect of an agent's action-metabolism, pharmacokinetics, pharmacodynamics-can modulate the response of an organism to an agent. Similarly, other effects of a chemical that induce BW loss, e.g., physical activity or temperature dysregulation, can also induce dose-response curves that appear hormetic. The interaction of the hormetic agents of BW loss and CR can influence agent tests. Controlling these factors may make it possible to dissect the key components of a hormetic response. In addition, the effects of CR or BW loss appear to extrapolate well across species [Colman R, Kemnitz JW. Aging experi-ments using nonhuman primates. In: Yu BP (Ed), Methods in Aging Research. CRC Press, Boca Raton, FL, 1999, pp. 249-267]. Thus there is some reason to believe that these hormetic factors may be important for humans, and may already be a factor for tests of potentially adverse agents already conducted in humans.
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine