Repeated acetaminophen dosing in rats: adaptation of hepatic antioxidant system

Author:

O'Brien P J1,Slaughter M R,Swain A,Birmingham J M,Greenhill R W,Elcock F,Bugelski P J2

Affiliation:

1. Department of Safety Assessment, SmithKline Beecham Pharmaceuticals, Welwyn, Hertfordshire AL6 9AR, England, UK

2. Department of Safety Assessment, SmithKline Beecham Pharmaceuticals, Welwyn, Herts AL6 9AR, UK

Abstract

Repeated dosing of acetaminophen (paracetamol) to rats is reported to decrease their sensitivity to its hepatotoxic effects, which are associated with oxidative stress and glutathione depletion. We determined if repeated acetaminophen dosing produced adaptive response of key antioxidant system enzymes. Male rats (Sprague-Dawley, 10 weeks) were given 800, 1200, or 1600 mg/kg/day acetaminophen by oral gavage for 4 days. Liver was assayed for oxidative stress and antioxidant markers: malondialdehyde (MDA), thiobar-bituric acid reactive substance (TBARS), total antioxidant status (TAS), glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD), catalase (CAT), and superoxide dismutase (SOD), and alanine transaminase (ALT) as a marker of hepatocellular injury. Acetaminophen at 1200/1600 mg/kg decreased GSH 26/47%, GPx 21/26%, CAT 35/28%, SOD 21/12%; and TAS 28/18% (correlated with CAT, r=0.91; SOD, r=0.66; GPx, r = 0.45). Despite antioxidant deficiencies, and no TBARS change, MDA decreased 26%/33%/37% at 800/1200/1600 mg/kg, which correlated with increased GR (61%/62%/76%, r = 0.77) and G6PD (130%/110%/190%, r = 0.78). Both MDA (r = 0.68) and G6PD (r = 0.71) correlated with hepatic ALT, which decreased 27%o/43%/48%, respectively. Resistance to acetaminophen hepatotoxicity produced by repeated exposure is partially attributable to upregulation of hepatic G6PD and GR activity as an adaptive and protective response to oxidative stress and glutathione depletion.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3