Evaluation of cot mattress inner foam as a potential site for microbial generation of toxic gases

Author:

Jenkins R O,Morris T-A,Craig P J1,Goessler W2,Ostah N1,Wills K M3

Affiliation:

1. Faculty of Applied Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK

2. Institute for Analytical Chemistry, Karl Franzens Universitat Graz, Universitdetsplatz 1, 8010 Graz, Austria

3. Department of Medical Statistics, De Montfort University, The Gateway, Leicester LE1 9BH, UK

Abstract

Recent reports of biovolatilisation of phosphorus and antimony by anaerobic bacteria and of leaching of phosphorus and antimony fire-retardant additives from PVC cot mattress covers, indicate that the polyurethane inner-foam of cot mattresses could be a site for generation of toxic gases of group 15 elements. A toxic gas hypothesis for sudden infant death syndrome (SIDS) involving polyurethane foam of cot mattresses was proposed and tested experimentally. Levels of antimony, phosphorus, arsenic and bismuth were determined at four sites for 44 SIDS and 50 control (no death) cot mattress foams. There was no evidence to suggest that the levels of these elements in cot mattress foam have a causal relation to SIDS. Leaching of antimony trioxide from PVC mattress covers could account for detectable levels of this element in 52% of the cot mattress samples analysed. Volatile forms of antimony, phosphorus, arsenic and bismuth was not detected in the headspace of mixed or monoseptic cultures of anaerobic bacteria containing polyurethane foam. Past microbial activity had given rise to involatile methylated species of antimony in some of the cot mattress foams tested (61%, n = 24). Abiotic oxidation of biogenic trimethylatimony together with physical adsorption of methylantmony forms to the polyurethane foam matrix could account for the apparent absence of “escaped” volatile antimony species in culture headspaces of incubation vial. There was no evidence to suggest that levels of trimethylantimony or total methylantimony forms in cot mattress foams have a causal relation to SIDS.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3