Disturbance regime landscapes: mountain drainage systems interrupted by large rockslides

Author:

Hewitt Kenneth1

Affiliation:

1. Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada

Abstract

The paper examines the role of rockslide-rock avalanches in mountain landscapes, and the landforms associated with them. While the landslides are extremely short-lived events, rock wall detachment scars and rock avalanche deposits can persist for long periods as influences on landscape development. Especially significant are rock avalanches with complex runout and emplacement related to interactions with rugged terrain or deformable substrates. Their characteristics greatly increase the scope of landscape disturbance. Hundreds of rock avalanches are now known, worldwide, that have formed crossvalley barriers interrupting mountain drainage systems. Many have done so for millennia or tens of millennia. They give rise to distinctive sediment assemblages, constructional and erosion landforms generated by other processes responding to the landslides and constrained by them. A landslide interruption epicycle of five phases is described, and related sediment assemblages. These provide the basis for defining a landslide interrupted valley landsystem. Its full significance is seen in mountain drainage basins affected by multiple landslide interruptions. These create naturally fragmented fluvial systems, in which a disturbance regime geomorphology is identified. Stream profiles, sediment delivery, and related landforms are kept in a chronic state of disequilibrium with respect to climatic and geotectonic controls, and drainage organization. The transHimalayan Upper Indus Basin provides an example, a large high mountain drainage system fragmented by more than 170 late Quaternary rock avalanches. In this case, as elsewhere, misidentification of rock avalanches led to neglect of their role in Quaternary histories. The nature and limitations of disturbance regime geomorphology are discussed, and broader implications for mountain landscapes.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3