Stable isotopic analyses of modern benthic foraminifera from seasonally stratified shelf seas: disequilibria and the 'seasonal effect'

Author:

Scourse J. D.1,Kennedy H.,Scott G. A.2,Austin W. E.N.3

Affiliation:

1. School of Ocean Sciences, University of Wales (Bangor), Menai Bridge, Anglesey LL59 5AB, UK;

2. School of Ocean Sciences, University of Wales (Bangor), Menai Bridge, Anglesey LL59 5AB, UK

3. School of Geography and Geosciences, University of St Andrews, Irvine Building, North Street, St Andrews, Fife KY16 9AL, UK

Abstract

Previously published stable isotopic data on benthic foraminiferal species from a Holocene sequence in the Celtic Sea have been interpreted in terms of the progressive replacement of a tidally mixed by a stratified water mass. Offsets in the δ18O data between Ammonia batavus and Quinqueloculina seminulum were attributed to a ‘seasonal effect’ in which these two species were hypothesized to have calcified at different times of the year. The aims of this study were to test the hypotheses (1) that benthic foraminiferal stable isotope records from across the Celtic Sea front reflect seasonal stratification and (2) that offsets in the oxygen isotope record between different species are the result of the postulated seasonal effect. Hypothesis 1 was tested through investigation of live and dead benthic foraminiferal and bottom-water δ18O and δ13C sampled in transects across the Celtic Sea front from mixed through frontal to stratified water masses. Measurements of bottom-water salinity enabled a mixing-line equation to be developed for this area enabling quantitative reconstructions of bottom-water temperature from the isotopic data. Samples from stratified settings are characterized by heavier δ18Oforamand lighter δ13Cforamvalues than the mixed samples. Offsets in δ18Oforambetween A. batavus and Q. seminum support the notion of the seasonal effect. A. batavus produces values close to equilibrium while Q. seminulum overestimates temperature by up to 2°C and this might explain some of the offset observed between the two species observed in the palaeodata. Comparison of the δ18Ofoarmdata with measured seasonal temperature cycles from mixed and stratified localities in the Celtic Sea demonstrates that, while most foraminifera calcify during the summer months, different species calcify at, or are preserved from, different times within this warm part of the seasonal cycle; Q. seminulum calcifies during September when peak bottom-water temperatures occur, while A. batavus calcifies during September in stratified localities, but during spring or early summer in mixed localities. This study confirms the interpretation of the δ18O palaeodata from the Celtic Sea as a palaeostratification record and demonstrates that δ18O data from shelf-sea cores can be used to supplement benthic foraminiferal assemblages as a tool for reconstructing the long-term dynamics of seasonal stratification.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3