Exergy analysis of a low temperature radiant heating system

Author:

Asada Hideo,Boelman EC1

Affiliation:

1. Building Technology Department, Faculty of Architecture, Delft University of Technology, The Netherlands

Abstract

The purpose of this study is to gain insight into the process of heating a room with a low-temperature radiant heating system and solar energy, considering energy conversion and heat transfer steps in the building (where heat is required), in the incident solar radiation (which supplies part of the heat required) and in the heating system (which provides for the additional heating needs, by using electricity from a gas-fired power plant to drive a heat pump). We applied a theoretical framework developed by Shukuya et al., to a dynamic simulation model and did numerical calculations for a room with an exterior wall, with and without a south-facing window, during a heating season in the Netherlands. The exergy analysis allows direct comparison between different energy types (e.g., heat, electricity, fuel) on a common basis, and the concept of exergy consumption is useful for expressing how and where energy is dispersed in the course of energy conversion and heat transfer steps. The results show that exergy consumption in the room (demand side) is relatively small compared to the supply side (fuel burned at the power plant and the sun reaching the ground and facade). The calculations also show that the total amount of exergy consumed during the heating season can be larger than the total amount of exergy supplied during the same period, as a result of heat storage in the building mass, and of changes in the outdoor temperature between the moment of heat storage and heat release.

Publisher

SAGE Publications

Subject

Building and Construction

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3