Antiphospholipid antibodies permeabilize and depolarize brain synaptoneurosomes

Author:

Chapman J1,Cohen-Armon M2,Shoenfeld Y3,Korczyn A D2

Affiliation:

1. Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.

2. Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Tel Hashomer, Israel

3. Department of Medicine B and Research Unit of Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel

Abstract

Antiphospholipid antibodies (aPL) are associated with neurological diseases such as stroke, migraine, epilepsy and dementia and are thus associated with both vascular and non-vascular neurological disease. We have therefore examined the possibility that these antibodies interact directly with neuronal tissue by studying the electrophysiological effects of aPL on a brain synaptosoneurosome preparation. IgG from patients with high levels of aPL and neurological involvement was purified by protein-G affinity chromatography as was control IgG pooled from ten sera with low levels of aPL. Synaptoneurosomes were purified from perfused rat brain stem. IgG from the patient with the highest level of aPL at a concentration equivalent to 1:5 serum dilution caused significant depolarization of the synaptoneurosomes as determined by accumulation of the lipophylic cation [3H]-tetraphenylphosphonium. IgG from this patient as well as IgG from two elderly patients with high levels of aPL were subsequently shown to permeabilize the synaptosomes to labeled nicotinamide adenine dinucleotide (NAD) and pertussis toxin-ADP-ribose transferase (PTX-A protein) as assayed by labeled ADP-ribosylation of G-proteins in the membranes. No such effects were seen with the control IgG. aPL may thus have the potential to disrupt neuronal function by direct action on nerve terminals. These results may explain some of the non-thromboembolic CNS manifestations of the antiphospholipid syndrome.

Publisher

SAGE Publications

Subject

Rheumatology

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3