Landscape openness and pollen records: a simulation approach

Author:

Sugita S.1,Gaillard M.-J.2,Broström A.3

Affiliation:

1. Department of Forest Resources, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan

2. Department of Biology and Chemistry, Växjö University, SE-351 95 Växjö, Sweden; Department of Quaternary Geology, Lund University, SE-223 63 Lund, Sweden

3. Department of Quaternary Geology, Lund University, SE-223 63 Lund, Sweden

Abstract

Quantitative reconstruction of the area cleared of forest in the past is essential to assess the possible indirect anthropogenic impacts on the past environment of Europe, including past climate. We apply a simul ation model of pollen dispersal and deposition (1) to re-examine the relationship between pollen and landscape openness, often uncritically inferred from non-arboreal pollen (NAP) percentages alone, and (2) to predict the relevant source area of pollen, the smallest spatial scale of vegetation that can be reconstructed from pollen records. The simulations use landscapes simplified from the modern open agricultural and semi-open forested regions in southern Sweden where traditional cultural landscapes still remain. The model is appropriate, because the simulated pollen assemblages resemble the pollen assemblages observed in each of the two landscape types, and because the simulated relationships between NAP percentages and percentage cover of open land within 1000 m agree with the empirical relationships. The simulated relevant source area of pollen is the area within 800–1000 m from both small hollows and 3-ha ponds. NAP percentages give only a rough first approximation of the percentage cover of open land. More comprehensive methods will be required to obtain quantitative estimates of open land from fossil pollen.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3