Reduced-rank vector generalized linear models

Author:

Yee Thomas W1,Hastie Trevor J2

Affiliation:

1. Department of Statistics, University of Auckland, New Zealand, Department of Statistics and Applied Probability, National University of Singapore, Singapore,

2. Department of Statistics, Stanford University, Stanford, CA, USA

Abstract

Reduced-rank regression is a method with great potential for dimension reduction but has found few applications in applied statistics. To address this, reduced-rank regression is proposed for the class of vector generalized linear models (VGLMs), which is very large. The resulting class, which we call reduced-rank VGLMs (RR-VGLMs), enables the benefits of reduced-rank regression to be conveyed to a wide range of data types, including categorical data. RR-VGLMs are illustrated by focussing on models for categorical data, and especially the multinomial logit model. General algorithmic details are provided and software written by the first author is described. The reduced-rank multinomial logit model is illustrated with real data in two contexts: a regression analysis of workforce data and a classification problem.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3