Gelatin capsules as a delivery system for tomato (Lycopersicon esculentum) seed enhancements

Author:

Touchette Brant W.1,Cox Daniel S.2

Affiliation:

1. Department of Biology, 2015 Campus Box, Elon University, Elon NC, 27244, USA

2. Klondike Agriculture Products, 580 Kennedy Rd., Akron OH, 44305, USA

Abstract

Seed enhancements involve post-harvest modifications of seeds intended to improve germination and plant performance. This includes seed modifications that facilitates the delivery of other plant-benefiting components (e. g., nutrients or plant protectants). This study examined the use of tomato-seed encapsulation as a possible extension of seed coatings. Placing seeds within gelatin capsules offers potential benefits including space for greater volumes of additives, separation between protectant chemicals and seeds, minimised human exposure to agrochemicals, and improved uniformity for mechanical planters. The objectives of this study were to determine if seed encapsulation alters seedling emergence, plant performance and serves as a delivery- system for controlled-release fertilizers. The results demonstrate that seed encapsulation delayed initial plant emergence by one day, and between one and two days for encapsulation with fertilizer treatments. Gelatin capsules alone in comparison with the control improved early root development, promoted plant growth and increased fruit production, indicative of gelatin's biostimulant properties. The addition of controlled-release fertilizers (especially Florikan, 18:6:8) provided greater aboveground, belowground and total plant mass. The results of this study support the concept that seed encapsulation can improve tomato performance, and that other component(s) can be successfully delivered to provide additional plant benefits.

Publisher

International Seed Testing Association

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3