1. Popova, I.A. Detection of anomalies in a data set using unsupervised machine learning algorithms Isolation Forest and Local Outlier Factor/ I.A. Popova StudNet. 2020; 3(12):1460-1470. – EDN XILRBX. (In Russ)
2. Gaiduk, K.A. On the issue of implementing algorithms for identifying internal threats using machine learning / K.A. Gaiduk, A.Yu. Iskhakov. Bulletin of SibGUTI. 2022;16(4):P. 80-95. – DOI 10.55648/1998-6920-2022- 16-4-80-95. – EDN SGBSIH. (In Russ)
3. Savitsky, D.E. Detecting anomalies when processing streaming data in real time / D.E. Savitsky, M.E. Dunaev, K.S. Zaitsev. International Journal of Open Information Technologies. 2022;10(6):70-76. – EDN IGAWAO. (In Russ)
4. Terskikh, M. G. Detection of anomalous user behavior in Windows security event logs using machine learning algorithms / M. G. Terskikh, E. M. Tishina. Theory and practice of modern science. 2018; 5(35): 821-839. – EDN UYMTHC. (In Russ)
5. Dynamic user authentication based on analysis of work with a computer mouse / A. V. Berezniker, M. A. Kazachuk, I. V. Mashechkin [etc.]. Bulletin of Moscow University. Episode 15: Computational mathematics and cybernetics. 2021; 4: 3-16. – EDN XIQNIZ. (In Russ)