Algorithm for correcting the image depth map based on the points brightness and their distance from the observation point

Author:

Korotkevich S. I.1,Minaeva Yu. V.1

Affiliation:

1. Voronezh State Technical University

Abstract

Objective. Modeling the human head is a significant problem that arises in a wide variety of fields of science and technology. Existing active technologies for reconstruction and modeling of the object under study require expensive equipment and trained personnel. Methods. An alternative is to use passive methods that perform image processing using special mathematical algorithms. One of these methods is the stereo vision, which is based on the use of paired images taken simultaneously with several cameras positioned and calibrated in a certain way. However, a common drawback of stereo vision methods is the possibility of obtaining erroneous depth maps due to poorquality source images or incorrect camera and lighting settings. Results. Procedures were developed that use additional parameters of image points, which can be used to correct depth maps to avoid the appearance of defects. To achieve this objective, the existing mathematical software for processing photo and video materials is analyzed; methods for suppressing noise in the image, obtaining an image contour, as well as a method for obtaining a 3D object matrix based on changing the direction of illumination are proposed; the algorithm is tested on a test example. Conclusion. The developed technique should improve the quality of the depth map of the processed image and thus make the modeling procedures more efficient. 

Publisher

FSB Educational Establishment of Higher Education Daghestan State Technical University

Subject

Polymers and Plastics,General Environmental Science

Reference22 articles.

1. Batseva D.A. Passivnyye tekhnologii modelirovaniya golovy cheloveka / D.A. Batseva, YU.S. Belov // Nauchnoye obozreniye. Tekhnicheskiye nauki. 2017. № 2. S. 11-14. [Batseva D.A. Passive technologies for modeling the human head / D.A. Batseva, Yu.S. Belov // Scientific Review. Technical science. 2017. No. 2. S. 11-14. (In Russ)]

2. Batseva D.A. Aktivnyye tekhnologii modelirovaniya golovy cheloveka / D.A. Batseva, YU.S. Belov // Mezhdunarodnyy studencheskiy nauchnyy vestnik. 2017. № 3.Rezhim dostupa: https://www.eduherald.ru/ru/article/view?id=17296. - (Data obrashcheniya: 21.11.2017). [Batseva D.A. Active technologies for modeling the human head. Batseva, Yu.S. Belov // International student scientific bulletin. 2017. No. 3. Access mode: https://www.eduherald.ru/ru/article/view?id=17296. (Date of access: 21.11.2017) (In Russ)]

3. Forsayt D. A. Komp'yuternoye zreniye: sovremennyy podkhod / D. A. Forsayt, ZH. Pons. - M.: Vil'yams, 2004. 928 s. [Foresight D.A. Computer vision: a modern approach / DA Forsyth, J. Pons. M .: Williams, 2004.928 p. (In Russ)]

4. Ul'yanov S.V. Razrabotka sistemy stereozreniya dlya mobil'nogo robota / S.V. Ul'yanov, A.G. Reshetnikov, K.V. Koshelev // Programmnyye produkty i sistemy. 2017. T. 3, № 30. S. 435-438. [Ulyanov S.V. Development of a stereo vision system for a mobile robot / S.V. Ulyanov, A.G. Reshetnikov, K.V. Koshelev // Software products and systems. 2017. T. 3, No. 30. pp. 435438. (In Russ)]

5. Scharstein D. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms / D. Scharstein, R. Szeliski // Int. Journal of Computer Vision. 2002. Vol. 47, No 1-3. pp. 7-42.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3