Molecular signatures in diabetic foot ulcer by integrated gene expression profiling via bioinformatics analysis

Author:

Shetty K. Shwetha,Gollapalli Pavan,Shetty Abhijith,Kumari N. Suchetha,Shetty Praveenkumar,Prakash Patil

Abstract

Introduction and Aim: Diabetic foot ulcers (DFUs) are a common and debilitating diabetic consequence leading to lower-limb amputations, long-term disability, and reduced lifespan. There is a lack of clinical diagnosis expertise because of no adequate diagnostic signs for DFU. As a result, the current research aims to find out how differently expressed genes (DEGs) affect the DFU. Materials and Methods: Bioinformatics analysis was used to evaluate DEGs using the GSE132187 dataset of the NCBI-GEO database, which contained samples from three hyperglycemic and three normoglycemic macrophage-like cell lines. Following the discovery of DEGs, Gene Ontology (GO) and KEGG pathway enrichment analysis were used to investigate how genes are classified into preset bins based on their functional properties. To discover hub DEGs in DFU, a protein-protein interaction (PPI) network was built and five topological parameters such as degree, stress, Closeness centrality, betweenness centrality, and radiality were evaluated. Results: We found 547 DEGs using the GSE132187 dataset, comprising 79 upregulated DEGs and 468 downregulated DEGs. There were 434 nodes and 1724 edges in the PPI network. The giant network uncovered six modules that are significantly enriched in biological processes like positive JNK cascade regulation, positive interferon-gamma production regulation, negative cell proliferation regulation, cellular response to zinc ion, cellular response to lipopolysaccharide, wound healing, and inflammatory response. Conclusion: Bioinformatics analysis revealed the major differentially expressed hub-genes implicated in DFUs. These findings suggested that these genes could be used as a DFU prognostic, diagnostic, or therapeutic targets.

Publisher

Indian Association of Biomedical Scientists

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3