Author:
Riza Hammam,Santoso Eko Widi,Tejakusuma Iwan Gunawan,Prawiradisastra Firman,Prihartanto Prihartanto
Abstract
Flood disaster is one of predominant disaster event in Indonesia. The frequency and intensity of this disaster tend to increase from year to year as well as the losses caused thereby. To reduce the risks and losses due to flood disasters, innovation in disaster mitigation is needed. Artificial intelligence and machine learning are technological innovations that have been widely applied in various fields of life and can also be used to improve flood disaster mitigation. A literature study conducted in this research shows that the use of artificial intelligence and machine learning has proven to be able, and succeed to fastly and accurately perform flood prediction, flood risk mapping, flood emergency response and, flood damage mapping. ANNs, SVM, SVR, ANFIS, WNN and DTs are popular methods used for flood mitigation in the pre-disaster phase and it is recommended to use a combination or hybrid of these methods. During the flood disaster response phase, the application of artificial intelligence and machine learning are still not much has been done and need to be developed. Examples of the application are the use of big data from social media Twitter and machine learning both supervised learning with Random Forest and unsupervised learning with CNN which have shown good results and have a good prospect to be applied. For the use of artificial intelligence in post-disaster flood phase, are still also rare, because it requires actual data from the field. However, in the future, it will become a promising program for the assessment and application of artificial intelligence in the flood disaster mitigation.
Publisher
Badan Pengkajian dan Penerapan Teknologi (BPPT)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献