UTILIZATION OF ARTIFICIAL INTELLIGENCE TO IMPROVE FLOOD DISASTER MITIGATION

Author:

Riza Hammam,Santoso Eko Widi,Tejakusuma Iwan Gunawan,Prawiradisastra Firman,Prihartanto Prihartanto

Abstract

Flood disaster is one of predominant disaster event in Indonesia. The frequency and intensity of this disaster tend to increase from year to year as well as the losses caused thereby. To reduce the risks and losses due to flood disasters, innovation in disaster mitigation is needed. Artificial intelligence and machine learning are technological innovations that have been widely applied in various fields of life and can also be used to improve flood disaster mitigation. A literature study conducted in this research shows that the use of artificial intelligence and machine learning has proven to be able, and succeed to fastly and accurately perform flood prediction, flood risk mapping, flood emergency response and, flood damage mapping. ANNs, SVM, SVR, ANFIS, WNN and DTs are popular methods used for flood mitigation in the pre-disaster phase and it is recommended to use a combination or hybrid of these methods. During the flood disaster response phase, the application of artificial intelligence and machine learning are still not much has been done and need to be developed. Examples of the application are the use of big data from social media Twitter and machine learning both supervised learning with Random Forest and unsupervised learning with CNN which have shown good results and have a good prospect to be applied. For the use of artificial intelligence in post-disaster flood phase, are still also rare, because it requires actual data from the field. However, in the future, it will become a promising program for the assessment and application of artificial intelligence in the flood disaster mitigation.

Publisher

Badan Pengkajian dan Penerapan Teknologi (BPPT)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3