Housing Price Prediction by Divided Regression Analysis

Author:

Goh Yann Ling, ,Goh Yeh Huann,Yip Chun-Chieh,Ng Kooi Huat, , ,

Abstract

Regression analysis is a statistical methodology to investigate the relationship between the dependent variable and the independent variables. In current era with the trend of big data, we might face some problems when performing statistical analysis for the massive volume of data. For example, the heavy burden of the computing load will cause the computation to be time consuming, the accuracy of the results might be affected in view of the vast volume of data. Hence, divided regression analysis is proposed to reduce the burden of the computing load. This approach performs subdivision of the dataset into several unique subsets, then the multiple linear regression is fi tted into each subset. The results obtained from each subset are then combined to obtain a divided regression model which is treated as the original overall dataset. The dataset used in this paper is KC Housesales Data, obtained from the Kaggle website. The dataset contains statistics information about the housing price, for example, size of lot, size of living area and selling price of the house. The goal of this paper is to predict the selling price of a house from the given attributes. The dataset is partitioned into fi ve subsets. Consequently, multiple linear regression is fi tted for each subset. Then, some model adequacy checking will be applied on the models. The test in determining the existence of multicollinearity in the models is rather important as well because the collinearity among the independent variables will affect the overall results. Hence, the variance infl ation factor (VIF) approach is used to determine the existence of multicollinearity. Finally, the divided regression model is obtained by combining results from all the subsets and the validity of divided regression model is verifi ed.

Publisher

Chiang Mai University

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3