Strategies for Producing Reliable Trends Forecasting of COVID-19 Pandemic in Malaysia using Dynamic Mode Decomposition

Author:

Ahmad Noor Atinah, ,Othman Nurul Ashikin,

Abstract

Dynamic Mode Decomposition (DMD) with time delay embedding is used to predict dynamic patterns in univariate time series. An important pattern that can be extracted using DMD is the trend or global change in a time series which is useful for producing reliable forecast. DMD utilizes the computationally effi cient singular value decomposition (SVD) to produce a low rank approximation of the linear operator that brings about the dynamic patterns in the time series. Trend in the time series is translated as dynamic modes of the operator with low frequencies. The time evolution of this low frequency pattern produces forecast of the time series. In this paper, we outline the strategies for extracting trend component from COVID-19 time series of Malaysia. It is discovered that, other than identifying modes with slow varying frequencies, we need to also resolve the time stamp delay, so that mean-square error of the reconstructed time series is minimal. Information of the magnitude and phase of DMD modes are useful to identify persistent patterns and remove nonstationary ones. We compare the performance of DMD with another SVD-based method which is the singular spectrum analysis (SSA) and our results highlight certain fundamental difference between these two methods. The forecasts from SSA tend to lean towards the direction of maximum variance, producing low reconstruction error but slow to detect sudden changes in the time series. On the other hand, forecasts from DMD captures the phases of dominant modes that dictates the overall global pattern, hence providing a better prediction of future dynamics of the time series.

Publisher

Chiang Mai University

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3