Effects of Collagen Coating, Fetal Bovine Serum Concentration, Differentiation Agents, and Neurotoxin Application on In Vitro Modeling of Parkinson's Disease Using SH-SY5Y Cell Culture

Author:

Koçancı Fatma Gonca1ORCID

Affiliation:

1. ALANYA ALAADDIN KEYKUBAT UNIVERSITY

Abstract

Aim: This study aims to optimize SH-SY5Y culture conditions to develop precise in vitro disease models for Parkinson's disease (PD) research. It seeks to investigate the effects of various factors such as collagen coating, fetal bovine serum concentration, differentiation agents, and neurotoxin treatments on cellular behavior and disease modeling. Materials and Methods: The human neuroblastoma SH-SY5Y cell line was cultured in DMEM/F12 supplemented with heat-inactivated fetal bovine serum (FBS), penicillin-streptomycin, and L-glutamine. Collagen coating was applied to assess its impact on cell differentiation, while the ideal cell density and serum ratio for generating neurite-like cells were determined through experimentation. The MTT assay was employed to evaluate the cytotoxic effects of paraquat, while dopamine levels were quantified using ELISA. Gene expression was analyzed via real-time qPCR. Immunofluorescence staining and neurite length measurements were conducted to validate the PD model and assess cellular morphology. Results: Cells cultured at a density of 5x103 cells/cm2 with collagen and 2% FBS exhibited characteristics of dopaminergic neurons upon exposure to retinoic acid. Conversely, paraquat treatment induced neurotoxicity, resulting in decreased dopamine levels and impaired neurite outgrowth. Conclusion: This study investigated the optimization of SH-SY5Y cell culture conditions for PD modeling. Key findings include optimal cell density, FBS concentration, and beneficial effects of collagen coating. Additionally, an effective paraquat neurotoxicity protocol has been established, providing a solid framework for future research on neuronal differentiation and degeneration.

Publisher

Acta Medica Alanya

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3