Abstract
To reduce the rate of contagion by Covid-19, the Colombian government has adopted, among other measures, for mandatory isolation, with divided opinions, because despite helping to reduce the spread of the virus, it generates mental and economic problems that are difficult to overcome. The objective of this document was to analyze the underlying sentiments in the Twitter comments related to isolation, identifying the topics and words most frequently used in this context. A machine learning algorithm was built to identify sentiments in 72,564 posts and a social network analysis was applied establishing the most frequent topics in the data sets. The results suggest that the algorithm is highly accurate in classifying feelings. Also, as the isolation extends, comments related to the quarantine grow proportionally. Fear was identified as the predominant feeling throughout the period of confinement in Colombia.
Publisher
Fundacion Universitaria Konrad Lorenz
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献