Basic Elements of Artificial Intelligence Tools in the Diagnosis of Cutaneous Melanoma
Author:
Abstract
Cutaneous melanoma (CM) incidence has dramatically increased in the last years. Early diagnosis is of paramount importance in terms of prognosis. Artificial Intelligence (AI) tools are being proposed for clinicians and pathologists as an adjunct support in the diagnostic process. We described herein an overview of the most important parameters that a potential AI tool should take into consideration in histopathology to evaluate a skin lesion. First of all, recognition of a melanocytic or non-melanocytic nature. Furthermore, melanocytic lesions should be stratified according to at least four parameters: silhouette and asymmetry; identification and spatial distribution of the cells; mitosis count; presence of ulceration. According to the number of parameters the AI tools might stratify the risk of CM and prioritize the pathologist's work.
Publisher
Begell House
Subject
Cancer Research
Link
https://www.dl.begellhouse.com/download/article/4d75768b27535113/37-41.pdf
Reference14 articles.
1. Shoo BA, Sagebiel RW, Kashani-Sabet M. Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J Am Acad Dermatol. 2010;62(5):751-6.
2. Mosquera-Zamudio A, Launet L, Tabatabaei Z, Parra-Medina R, Colomer A, Oliver Moll J, Monteagudo C, Janssen E, Naranjo V. Deep learning for skin melanocytic tumors in whole-slide images: A systematic review. Cancers. 2022;15(1):42.
3. Ianni JD, Soans RE, Sankarapandian S, Chamarthi RV, Ayyagari D, Olsen TG, Bonham MJ, Stavish CC, Motaparthi K, Cockerell CJ, Feeser TA. Tailored for real-world: A whole slide image classification system validated on uncurated multi-site data emulating the prospective pathology workload. Sci Rep. 2020;10(1):3217.
4. Mooi WJ, Krausz, T. The histological diagnosis of cutaneous melanoma. Kirkham N, Cotton DWK, Lallemand RC, White JE, Rosin RD, editors. Diagnosis and management of melanoma in clinical practice. London: Springer; 1992. p. 61-73.
5. Dika E, Curti N, Giampieri E, Veronesi G, Misciali C, Ricci C, Castellani G, Patrizi A, Marcelli E. Advantages of manual and automatic computer-aided compared to traditional histopathological diagnosis of melanoma: A pilot study. Pathol Res Pract. 2022;237:154014.
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence and skin melanoma;Clinics in Dermatology;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3