Role of the Tumor Microenvironment in Mediating Resistance to Anti-HER2 Antibodies

Author:

Gupta Manoj Kumar,Gouda Gayatri,Vadde Ramakrishna

Abstract

Breast cancer (BC) is the most common cancer and the second leading cause of cancer-related deaths in women globally. Despite advancements in treatment strategies, many patients still develop challenging-to-treat metastatic disease. The development and progression of tumors are influenced by genetic/epigenetic changes within tumor cells and alterations in the tumor microenvironment (TME) through a dynamic communication. The TME comprises various elements, including immune, tumor, and stromal cells. Tumor cells at the core of the TME orchestrate complex signals that lead to tumor growth, survival, and resistance to treatment. Human epidermal growth factor receptor 2 (HER2) is overexpressed in a significant proportion of invasive breast cancers, influencing prognosis and prediction. Novel therapeutic approaches target HER2-positive breast cancers by leveraging HER2-targeted therapeuirtcs such as antibody-drug conjugates, monoclonal antibodies, and tyrosine kinase inhibitors. The TME in HER2-positive breast cancers also involves cancer-associated fibroblasts and cancer-associated adipocytes, which play critical roles in tumor progression and therapy resistance. The immune microenvironment also plays a significant role, with studies indicating its impact on outcomes in HER2-positive breast cancer. Trastuzumab, one of the first monoclonal antibodies targeting HER2, has shown promise in enhancing survival rates in HER2-overexpressing breast cancer. Integration of trastuzumab with chemotherapy has demonstrated significant enhancements in disease-free survival as well as overall survival rates during early breast cancer treatment. Trastuzumab functions by inhibiting HER2 signaling pathways, leading to cell cycle arrest and induction of apoptosis. Overall, understanding the complex interplay between HER2, the tumor microenvironment, and therapeutic interventions is essential for improving outcomes in HER2-positive BC.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3