The current rapid development of more selective and effective drugs for the treatment of thyroid cancer has open a new era in the treatment of patients with this condition, in the past limited to the possibility of only radioactive iodine for well differentiated tumor and surgery for medullary thyroid carcinoma (MTC). The treatment of advanced medullary thyroid carcinoma has evolved in the last few years and options for patients with advanced disease are now available. Multikinase inhibitors (MKIs) with nonselective RET inhibition like Vandetanib and Cabozantinib were approved for the treatment of MTC, although the efficacy is limited due to the lack of specificity resulting in a higher rate of drug-related adverse events, leading to subsequent dose reductions, or discontinuation, and the development of a resistance mechanism like seen on the RET Val804 gatekeeper mutations. MTC is associated with mutations in the RET protooncogene, and new highly selective RET inhibitors have been developed including Selpercatinib and Pralsetinib, drugs that have demonstrate excellent results in clinical trials, and efficacy even in the presence of gatekeeper mutations. However, despite their efficacy and great tolerability, mechanisms of resistance have been described, such as the RET solvent front mutations. Due to this, the need of constant evolution and drug research is necessary to overcome the emergence of resistance mechanisms.