ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM

Author:

Sharma Pushap Lata,Bains Deepak,Rana Gian C.

Abstract

The present paper investigates the effect of suspended particles on thermal convection in rotating Casson nanofluids saturating a Darcy-Brinkman porous medium which has various applications in different sectors, including those that process food, paint, water generators, electricity generators, hydrology, and geophysics, heavily rely on rotation in thermal convection. With the aid of the Galerkin 1st approximation technique, the numerical examination is carried out. The Darcy-Brinkman porous media and particles suspension are taken into consideration throughout the conduct of this study. The non-Newtonian Casson nanofluid, Darcy-Brinkman porous medium, particle suspension and rotation parameter, and their impact on thermal convection have been analyzed and presented graphically for free-free, rigid-rigid, and rigid-free boundaries. It is found that for all boundary conditions the Casson nanofluid and suspended particle parameters have destabilizing impact on the stationary convection, whereas the parameter which occurred due to presence of rotation, i.e., Taylor number and Brinkman porous medium parameters, both delayed the stationary convection. In addition, we have discovered that for realistic rigid-rigid boundary condition, the system is determined to be more stable than for the other two boundary conditions. Also, on the basis of several approximations on the Taylor number and other parameters, the critical wave number and value for stationary convection are determined.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3