EXPLORING THE WETTABILITY CHARACTERISTICS OF ARGILLACEOUS SILTSTONE WITH IMBIBITION AND NMR TECHNIQUE FOR MARINE RESERVOIR EXPLOITATION

Author:

Yang Liu,Zhang Zhengyan,Xu Huijin,Gao Jingwei

Abstract

The argillaceous siltstone reservoirs in South China Sea involves a wide variety of fossil resources, such as gas hydrate, marine oil, natural gas, and other mineral resources. The argillaceous siltstone with mixed wettability characteristics is easily dispersed in water, and it is difficult to study the wettability of argillaceous siltstone based on water imbibition technique. In this work, an innovative method is proposed to demonstrate the mixed wettability based on imbibition and nuclear magnetic resonance (NMR) technique. The contact angle results show that the affinity of argillaceous siltstone for oil is stronger than that for water. However, the imbibition volume of water is much larger than that of oil. The oil imbibition curve is linear, while water imbibition curve has a two-stage feature. This difference can be explained by the expansion of clay, where more water wet surfaces are exposed to the liquid, leading to changes in wettability. In addition, the coexistence of organic matter and inorganic clay minerals results in a mixed wetting characteristic. Based on NMR technology, a micro wettability index is proposed to quantitatively characterize the micro wettability heterogeneity. The micro water (or oil) wettability index of micropores (0.01-10 ms) is approximately equal to 0.5, indicating the mixed wettability. The micro water wettability index of mesopores (10-500 ms) is approximately equal to 1.0, indicating strong water wettability. These pores or cracks may be induced by clay minerals expansion. The micro oil wettability index of macropores (> 500 ms) is approximately equal to 1.0, indicating strong oil wettability, which is resulted from significant accumulation of organic debris enrichment. It is of great significance to improve the exploration and exploitation efficiency of mineral resources in the South China Sea.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3