EFFECT OF MICROSTRUCTURES ON MASS TRANSFER INSIDE A HIERARCHICALLY STRUCTURED POROUS CATALYST

Author:

Moghaddam Masood,Abbassi Abbas,Ghazanfarian Jafar

Abstract

In this paper, the pore network model to investigate the reaction-diffusion process in the hierarchically structured porous catalyst particle is extended to consider the phenomenon of deactivation by coking. In this framework, the interaction of internal particle pore structure and mass transfer under the condition of coke deposition is examined. Then, the effect of structural features, namely macroporosity and pore size ratio, the deactivation properties, the maximum loading of coke, as well as the transport properties, the pore Damköhler number on the net reaction rate, and deactivation of the particle have been investigated. Three deactivation mechanisms are accounted for, namely, the site coverage, the pore narrowing, and the pore blockage. It is found that the deactivation of the catalyst particle can be divided into two conditions: the kinetic deactivation and the structural deactivation. It is shown that depending on the Damköhler number, increasing the macroporosity does not necessarily improve the reactivity and deactivation resistance of the catalyst. The key finding of this work is to demonstrate and quantify how changing the typical fresh catalyst microstructure into a hierarchical one influences the reactivity and deactivation.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3