INVESTIGATION OF OVERSTABILITY ANALYSIS OF OSCILLATORY THERMO-BIOCONVECTION WITH ARBITRARY DIRECTIONS OF VIBRATION

Author:

Kushwaha Atul Kumar,Sharma Y. D.,Sanjalee

Abstract

The vibrations under the temperature gradient in the fluidic system could induce a thermo-vibrational force even in the absence of gravity, which helps to develop the bioconvective flow in the system. The present study aims to explore the effect of arbitrary directional vibrations on the overstability of the fluidic system. Flow governing equations are framed using the Kuznetsov model to study the effect of vibrations on the suspension's overstability. The secular equation is obtained from the flow governing equations utilizing the time-averaged technique, linear stability analysis, and finally the Galerkin method for rigid-rigid boundary conditions. The study shows that the vibrations stabilize the system when applied at an angle ranging from (0, π/6) ∪ (2π/3, π) but destabilize it when applied at an angle ranging from (π/6, 2π/3). Furthermore, the gyrotactic microorganisms slowly diffuse in the horizontal direction and quickly diffuse in the vertical direction.

Publisher

Begell House

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3