A LATTICE BOLTZMANN STUDY OF NANO-MAGNETO-HYDRODYNAMIC FLOW WITH HEAT TRANSFER AND ENTROPY GENERATION OVER A POROUS BACKWARD FACING-STEP CHANNEL

Author:

Hammouda Sihem,Naji Hassane,Dhahri Hacen

Abstract

In this study, a numerical investigation of a magneto-hydrodynamic (MHD) and backward-facing nanofluidic flow was performed using the thermal lattice Boltzmann method (LBM) with multiple distribution functions to handle dynamic and thermal fields, including the magnetic force. The Cu-H<sub>2</sub>O based nanofluid is considered as the working fluid, and the Brinkman-Forchheimer model is adopted to mathematically formulate the porous medium. In addition, heat transfer, pumping power, thermal performance index, and entropy generation within a backward-facing step open-ended channel with adiabatic walls has been investigated. A preliminary comparison of the simulation outcome with available numerical results shows that the in-house built code aptly describes the nanofluid flow behavior and heat transfer process. Afterward, a parametric examination of the impact of Hartmann number (0.0 &le; <i>Ha</i> &le; 25), Darcy number (10<sup>-3</sup> &le; <i>Da</i> &le; 1.0), Eckert number (0 &le; <i>Ec</i> &le; 10), nanoparticles volume fraction (0&#37; &le; &phi; &le; 4&#37;), and magnetic field tilt (0 &le; &gamma; &le; &pi;/2) on streamlines, isotherms, friction factor (<i>C<sub>f</sub></i>), pressure drop, pumping power, average Nusselt number (<i>Nu</i><sub>av</sub>), thermal performance index (<i>PI</i>), and average entropy generation ratio (S*) has been conducted. Based on the findings obtained, it can be stated that increases in the nanoparticles' volume fraction and <i>Ha</i> rise <i>Nu</i><sub>av</sub>, pressure drop (&Delta;<i>P</i>), and pumping power (<i>P<sub>pump</sub></i>) occur. On the other hand, <i>PI</i> and S* drop when &phi; and <i>Ha</i> rise. Bejan's number has also been shown to increase with <i>Ha</i>. It also turned out that increasing the magnetic field tilt involves a rise in heat transfer, pressure drop, and pumping power, except for <i>PI</i> and entropy generation.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3