NON-NESTED MULTILEVEL ACCELERATION OF MESHLESS SOLUTION OF HEAT CONDUCTION EQUATION IN COMPLEX DOMAINS

Author:

Radhakrishnan A.,Xu M.,Shahane Shantanu,Vanka Surya Pratap

Abstract

In this paper, we developed and demonstrated a non-nested multilevel procedure for solving the heat conduction equation in complex domains using a meshless discretization method. Previous multilevel methods for solving elliptic partial differential equations in complex domains have mostly used one of the four approaches: nested refinement, agglomeration, additive corrections, and algebraic coarsening. Each of these techniques has some issues of generality, robustness, and speed of acceleration. In this paper, we developed a generally applicable multilevel algorithm for partial differential equations discretized on complex domains using unstructured finite volume, finite element, and meshless methods. We applied this multilevel method to accelerate convergence of the set of discrete equations obtained by a meshless technique. The heat conduction equation is discretized at scattered points using a polyharmonic spine (PHS) radial basis function (RBF) interpolation with appended polynomials to achieve exponential convergence of discretization errors. The RBF interpolations are performed over clouds of points, and the partial differential equation is collocated at the scattered points. The multilevel algorithm to solve the set of linear equations utilizes multiple independently generated coarser sets of points. Restriction of residuals and prolongation of the corrections are also performed using the RBF interpolations. The fast convergence of the algorithm is demonstrated for solution of the heat conduction equation in three model complex domains with manufactured solutions. A simple successive over-relaxation point solver is used as the relaxation scheme.

Publisher

Begell House

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3