ON THE SELF-STARTING COMPARATIVE PERFORMANCE EVALUATION OF DARRIEUS AND HYBRID HYDROKINETIC ROTOR

Author:

Saini Gaurav,De Ashoke

Abstract

Darrieus rotor is a promising technology for hydrokinetic and wind energy harvesting applications. However, the Darrieus rotor suffers from the problem of poor starting performance. The present research highlights solutions to improve the poor starting performance of the Darrieus rotor by introducing the hybrid rotor. Further, a comparative performance evaluation of conventional vertical axis Darrieus and hybrid rotors has been investigated numerically. The most widely used S-series S-1046 hydrofoil has been utilized by hybrid and Darrieus rotors. Further, two semicircular blades are used for the Savonius part of the hybrid rotor. The size of the Savonius part is optimized to obtain maximum performance from the hybrid rotor. Analyzing the flow field distributions across the turbine vicinity has highlighted various possible reasons. The study results have demonstrated that the hybrid rotor yields an exceptional increment of about 159.41% in the torque coefficient under low tip speed ratio (TSR) regimes (during initial starting) compared to the Darrieus rotor. However, due to the Savonius rotor's presence, the hybrid rotor's maximum power coefficient is reduced slightly compared to the maximum operating point of the Darrieus rotor. Further, the hybrid rotor yields a wider operating range than the single maximum operating point by the Darrieus rotor. The present investigations will assist the designers in selecting the site-specific hydrokinetic technology suitable for efficient and optimum use of hydrokinetic potential.

Publisher

Begell House

Subject

Pollution,Energy Engineering and Power Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3