The surface of dental implants has undergone multiple modifications across the timeline to enhance osseointegration, thereby enhancing the success of dental implants. This study compared the surface roughness, wettability and topography of sandblasted acid-etched, and oxidized titanium dental implants. Three commercially available implants-namely, SLA, SLActive, and TiUnite-were evaluated for surface roughness in terms of Ra, Rq, and Rz; wettability in terms of contact angle (CA); and topography using scanning electron microscopy (SEM). Roughness and wettability values were compared between the three surfaces by ANOVA and pairwise comparison by Tukey's HSD <i>post hoc </i>testing using SPSS Software. A <i>p</i> value of < 0.01 was considered to be statistically significant. The TiUnite surface exhibited the highest roughness values (Ra = 1.91 ± 0.006 μm, Rq = 2.99 ± 0.005 μm, Rz = 8.37 ± 0.003 μm) followed by the SLA and SLActive surfaces. The contact angles of the SLA, SLActive, and TiUnite dental implants were 98.44 ± 0.52°, 9 ± 0.03°, and 94.39 ± 0.08°, respectively. These data demonstrated statistically significant differences between the three surfaces (<i>p</i> < 0.01). There were no distinct differences in SEM features between the SLA and SLActive surfaces. However, the TiUnite surface exhibited a distinctly porous morphology. Oxidized dental implants differ from sandblasted acid-etched implants in terms of roughness, wettability, and surface topography.