Smart Microfluidics: Synergy of Machine Learning and Microfluidics in the Development of Medical Diagnostics for Chronic and Emerging Infectious Diseases

Author:

Madukwe David Uche Promise,Mike-Ogburia Moore Ikechi,Nduka Nonso,Nzeobi Japhet

Abstract

The COVID-19 pandemic, emerging/re-emerging infections as well as other non-communicable chronic diseases, highlight the necessity of smart microfluidic point-of-care diagnostic (POC) devices and systems in developing nations as risk factors for infections, severe disease manifestations and poor clinical outcomes are highly represented in these countries. These POC devices are also becoming vital as analytical procedures executable outside of conventional laboratory settings are seen as the future of healthcare delivery. Microfluidics have grown into a revolutionary system to miniaturize chemical and biological experimentation, including disease detection and diagnosis utilizing μPads/paper-based microfluidic devices, polymer-based microfluidic devices and 3-dimensional printed microfluidic devices. Through the development of droplet digital PCR, single-cell RNA sequencing, and next-generation sequencing, microfluidics in their analogous forms have been the leading contributor to the technical advancements in medicine. Microfluidics and machine-learning-based algorithms complement each other with the possibility of scientific exploration, induced by the framework's robustness, as preliminary studies have documented significant achievements in biomedicine, such as sorting, microencapsulation, and automated detection. Despite these milestones and potential applications, the complexity of microfluidic system design, fabrication, and operation has prevented widespread adoption. As previous studies focused on microfluidic devices that can handle molecular diagnostic procedures, researchers must integrate these components with other microsystem processes like data acquisition, data processing, power supply, fluid control, and sample pretreatment to overcome the barriers to smart microfluidic commercialization.

Publisher

Begell House

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3