A Computer-Aided Markov Random Field Segmentation Algorithm for Assessing Fetal Ventricular Chambers

Author:

Sriraam Natarajan,Sushma T. V.,Suresh S.

Abstract

Congenital heart disease (CHD) is the most widely occurring congenital defect and accounts to about 28% of the overall congenital defects. Analysis of the development of the fetal heart thus plays an important role for detection of abnormality in early stages and to take corrective measures. Cardiac chamber analysis is one of the important diagnosing methods. Segmentation of the cardiac chambers must be done appropriately to avoid false interpretations. Effective segmentation of fetal ventricular chambers is a challenging task as the speckle noise inherent in ultrasound images cause blurring of the boundaries of anatomical structures. Several segmentation techniques have been proposed for extracting the fetal cardiac chambers. This article discusses the performance evaluation of automated, probability based segmentation approach, and Markov random field (MRF) for segmenting the fetal ventricular chambers of ultrasonic cineloop sequences. 837 ultrasonic biometery sequences of various gestations were collected from local diagnostic center after due ethical clearance and used for the study. In order to assess the efficiency of the segmentation technique, four metrics such as dice coefficient, true positive ratio (TPR), false positive ratio (FPR), similarity ratio (SIR), and precision (PR) were used. In order to perform ground truth validation, 56% of the data used in this study were annotated by clinical experts. The automated segmentation yielded comparable results with manual annotation. The technique results in average value of 0.68 for Dice coefficient, 0.723 for TPR, 0.604 for SIR, and 0.632 for PR.

Publisher

Begell House

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3