Research on Medical Image Segmentation Method Based on Improved U-Net3+

Author:

Wang Chaoying,Li Jianxin,Zheng Huijun,Li Jiajun,Huang Hongxing,Jiang Lai

Abstract

Computer assisted diagnostic technology has been widely used in clinical practice, specifically focusing on medical image segmentation. Its purpose is to segment targets with certain special meanings in medical images and extract relevant features, providing reliable basis for subsequent clinical diagnosis and research. However, because of different shapes and complex structures of segmentation targets in different medical images, some imaging techniques have similar characteristics, such as intensity, color, or texture, for imaging different organs and tissues. The localization and segmentation of targets in medical images remains an urgent technical challenge to be solved. As such, an improved full scale skip connection network structure for the CT liver image segmentation task is proposed. This structure includes a biomimetic attention module between the shallow encoder and the deep decoder, and the feature fusion proportion coefficient between the two is learned to enhance the attention of the overall network to the segmented target area. In addition, based on the traditional point sampling mechanism, an improved point sampling strategy is proposed for characterizing medical images to further enhance the edge segmentation effect of CT liver targets. The experimental results on the commonly used combined (CT-MR) health absolute organ segmentation (CHAOS) dataset show that the average dice similarity coefficient (DSC) can reach 0.9467, the average intersection over union (IOU) can reach 0.9623, and the average F1 score can reach 0.9351. This indicates that the model can effectively learn image detail features and global structural features, leading to improved segmentation of liver images.

Publisher

Begell House

Reference25 articles.

1. Improved U-Net for lung infection region segmentation using multi-scale fusion attention mechanism;Peng B.Y.;Foreign Elec Measur Technol,2023

2. Efficient multi attention fusion U-Net colorectal polyp image segmentation algorithm;Xu Z.B.;J Hubei Minzu Univ Nat Sci Ed,2023

3. Dual-Branch-UNet: A dual-branch convolutional neural network for medical image segmentation;Jian M.;Comput Model Eng Sci,2023

4. Optimized active contour segmentation model for medical image compression;Tamboli S.S.;Biomed Signal Process Control,2023

5. Research on the magnetic resonance imaging brain tumor segmentation algorithm based on DOUNet;Huang T.;Int J Imag Syst Tech,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3